The left invariant metrics which is defined on Heisenberg group

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Fully Nonlinear Cr Invariant Equations on the Heisenberg Group

In this paper we provide a characterization of second order fully nonlinear CR invariant equations on the Heisenberg group, which is the analogue in the CR setting of the result proved in the Euclidean setting by A. Li and the first author in [21]. We also prove a comparison principle for solutions of second order fully nonlinear CR invariant equations defined on bounded domains of the Heisenbe...

متن کامل

Non-solvability for a Class of Left-invariant Second-order Differential Operators on the Heisenberg Group

We study the question of local solvability for second-order, leftinvariant differential operators on the Heisenberg group Hn, of the form

متن کامل

A remark on left invariant metrics on compact Lie groups

The investigation of manifolds with non-negative sectional curvature is one of the classical fields of study in global Riemannian geometry. While there are few known obstruction for a closed manifold to admit metrics of non-negative sectional curvature, there are relatively few known examples and general construction methods of such manifolds (see [Z] for a detailed survey). In this context, it...

متن کامل

Bi-invariant Metrics on the Group of Symplectomorphisms

This paper studies the extension of the Hofer metric and general Finsler metrics on the Hamiltonian symplectomorphism group Ham(M,ω) to the identity component Symp0(M,ω) of the symplectomorphism group. In particular, we prove that the Hofer metric on Ham(M,ω) does not extend to a bi-invariant metric on Symp0(M,ω) for many symplectic manifolds. We also show that for the torus T2n with the standa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematical Forum

سال: 2006

ISSN: 1314-7536

DOI: 10.12988/imf.2006.06164